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?he purpose of the paper is to study the diffraction of a shock wave by 

a snall wedge-like deflection of an otherwise straight wall, perpen- 

dicular to the shock front. This problem has also been treated in [1,2, 

3,41. 

Lighthill [l I reduced the problem to a boundary-value problem of 

Riemrinn-Hilbert type and solved it by the method of trial and error. A 

second solution is given below. It is aIs0 shown that the solution is 

not unique because solutions of problems with discontinuous coefficients 

depend on special conditions which are imposed on the solutions at the 

points of discontinuity of the prescribed boundary values E 5,61. The 

choice of a particular class of solutions does not follow from the 

differential equations and the boundary conditions alone, but requires 

additional determination. 

'Ihe method of solution of the boundary-value problem applied here 

makes possible solutions for more general physical conditions, For in- 

stance, solutions for the gas motion can be found when the wall deflects 

as a result of the oncoming shock wave and also in presence of unsteady 

disturbances ahead of the shock front which are generated by wall motion. 

1. Problem setting. Let the front of the plane shock wave move 

with velocity V,, along a smooth wall for t < 0, and, at the instant 
t = 0, let it meet a mnall wedge-like break in the wall of angle f a, 

Fig. 1. The medium in front of the shock wave is at rest and is charac- 

terized by its density pa, its pressure po, and its speed of sound co. 

'Ihe drift flow behind the shock wave is disturbed and the flow field 

in the disturbed region, bounded by the shock wave, its Mach reflection 

and the wall, will generally be rotational. Outside this disturbed 

region, the flow conditions behind the shock wave are constant and are 

obtainable from relationships across straight shock waves. Let us denote 
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the speed of sound, the flow velocity, the density and the pressure be- 

hind the undisturbed original shock wave by a, V,, R, P, respectively. 

Depending on the strength of the shock wave, this drift flow can be sub- 

sonic or supersonic as is shown in Figs. la and lb. 
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Fig. 1. 

Let us describe the disturbed flow field in a coordinate system moving 

with the drift velocity behind the original shock wave: 

U = Ul (d, y’, t) + . . . ) v = ?Jl (d, y’, t) + . . . (I.11 

P = R +PI (r'ty', t) + . . ., p = P fp1 (2’, y’, t) + . - - 

Furthermore, because of the absence of a length characterizing the 

problem, the flow properties will be homogeneous functions of order zero 

of their arguments. Let us introduce nondimensional variables: 

Ul (x’, y’, t) = Vlk (2, y), pl (z’, y’, t) = aVlR& (2, y) 
+. 

t‘l (I’, y’, t) = VlS (r, y), Pl (Z’? Y', t) = Rb (2, Y) ( 1 y=s 
(1.2) 

Hereafter, we shall drop the bar designating the dimensionless vari- 

ables. 

Let us substitute the expressions (1.1) into the basic system of equa- 

tions, which govern two-dimensional unsteady flows of an ideal gas, and 

into the boundary conditions at the wall and at the shock wave. lhe equa- 

tions for the perturbations are 

&A au ap 
xaQ+Y&=aj* 

av au ap xa;+ yay=ay, a$+gzxg+y~ (1.3) 

At the wall 
zT=ia for y = 0 (1.4) 

Men the equation of the disturbed shock front is represented in the 

form 

x=k++(y)+... (1.5) 

the relations across the shock wave will take the following form, for 
x = k: 
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,vl (JC + ~1) u - k (k + M,) p = MI (I$ - y$,), 2kMlu - MIP - k2p = 0 

2) = -I&/, -L M1p - 
‘f - I 

& p - kiVflu = (j, - y$,), (MI= 2, y = 1.4) (1.6) 

At the Mach-reflected wave front, the perturbations vanish when the 

drift flow behind the original shock is subsonic. In case of supersonic 

drift flow, a region of known Prandtl-Meyer expansion or Ackeret com- 

pression will be adjacent to the disturbed region along part of the 

curved Mach reflection, Fig. lb. 

2. Formulation of the boundary-value problem for the func- 
tion p. Elimination of u and v from the system cl.31 leads to 

(1_xz)a~--zxya~y’(1_y2)~-2(x~+y~ =o > 

'lhe shock relationships (1.6) can be expressed in terms of the single 

function p, utilizing (l.3): 

2kZM2 + 1112 + 1 1 ’ 
2k (1 - k2) M’ y-22ky a?/-&=0 J 

i?P ap 
for z=k (M = 2) (2.2) 

At the wall 

dP 
&I = 

0 for y=O (2.3) 

Furthermore, at the corner of the wall, 0, (Fig. la), the following 

condition must be satisfied for the subsonic case [l]: 

lim s aP 
a<"" = = oM1 

for Ax-,0 (2.4) 
AX 

At the reflected Mach wave the condition 

ap_ 
as-O (2.5) Fig. 2. 

must hold, where s represents the direction tangential to the Mach wave. 

In the supersonic case (Fig. lb), the following condition holds at 

the point of contact between the straight shock or expansion front 

issuing from 0 and the reflected Mach wave: 

(2.6) 

The problem is solved when the function p, satisfying Equation (2.1) 

and all the differential and integral conditions of this paragraph, is 
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determined. 

3. Transformation to a boundary-value problem in the theory 
of analytic functions. By means of the transformation 

2E 
r= l$-e” fJ=&l$ (3.1) 

Equation (2.1) can be reduced to Laplace equation in polar coordinates. 
Let the original physical plane correspond to the plane of the complex 
variable z = r exp (i6). 'Ihen the region of the disturbed flow in the 
planer- E exp (i0) has the shape represented in Fig. 2. Let n denote 
the exterior normal and s the tangent along the positive direction of 
the curve AB. The shock-wave relations (2.2) can then be expressed in 
terms of the normal and tangential derivatives of p along AB: 

M2+ Lo 3 w-* - 1) k” 
2M” - Al+5 COt () 

8p vcos2 0 - 8p 
as- -- cos 0 an - O (3.2) 

Let us map the interior of the curvilinear triangle in the < plane 
(Fig. 2) onto the upper half-plane of the complex variable z1 by means 
of the conformal representations 

Here k, = d l- k2. ‘Ihe boundary condition at the shock wave, (3.21, 
which now must be fulfilled on the segment of the red axis l< x1 < 00, 
takes on the form 

In the subsonic case, the boundary 
axis are 

1 
A=2@kM2t 

2w+ 1 

B=2fZkM2: \ (3.4) 

conditions on the rest of the real 

for -l<q<1 (on wall) (3.5) 

aP ---so for--mxl<-l 
(on reflected 

a% Mach wave) (3.6) 

In the supersonic case 

3P -=o 
%l 

for -1<q<1 

g=~~wl+IO) for --oo<xr<--l 

(3.7) 

(3.8) 

Here S(x) is the delta function. 
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4. The sofution of the boundary-value problem with discon- 
tinuous coefficients, Let us introduce the function 

aP . ap 
Pf (4 = G -t 1 G 

which is analytic in the upper half-plane and &ich on the real axis 
satisfies the condition 

The coefficients in (4.1) are discontinuous: 

a = 0, b=l for - oi) < xl < - 1 

a = 1, b=O for--1<xr<<1 

a (Xl) = t/z1 - 1, b (XI) = AXI - I3 for ~<Q<CO 

c (Xl) = h6 (51 + 20) for Ml<1 4 aM1 ___- 
c (x1) = - ihs (x1+ x0) for Ml>1 Iz= (/i--M12 

so that this boundary-value problem is of ~~~-~lbert type, with 
discontinuous coefficients, 2he solution is not unique, depending upon 
the nature of the assignable singularities at the points of discontin- 
uity of the coefficients in (4.11, One should seek the solution among 
the class of functions which are either bounded or have integrable 
singularities at x1 = + 1. Within this cl ass, there are four linearly 
independent solutions since the solution may at these points be (a) 
bounded at both points, (b) integrable at both points, i.e. at both 
points the integral 

s P+ (21) dz1 (4.2) 

exists, or (c) bounded at one of the points and integrable at the other, 
and vice versa. 

The lack of uniqueness of the solutions can be seen from the manner 
in which the boundary-value problem with discontinuous coefficients can 
be reduced to the boundary-value problem with continuous coefficients, 
for which the solution is unique, specifically by means of the change in 
the unknown function 

p+ (21) = 0 (2d.p: (21.) (4.3) 

Within the previously specified class of solutions the function o(zl) 
can be represented by any one of the four possibilities 
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o(l) = - 
(21) ‘r/Zl” 1, 

1 
0 @) @I) = jqy 

o(3) = /=, 21 + 1 
.- 

1/ Zl-- - 1 
(4.4) 

(Zl) Zl-- 1 a(4) (zl) 
= 

z1 + I 

Substituting (4 3) into (4.11, we obtain the boundary conditions for 

the problem with continuous coefficients 

4 (4 8 + bl (Xl) 2 = Cl (Xl) (4.5) 

Here 

01 = 0 for - CO < Xl < 1, Ul(X1) = l/n - 1 for I<Xl<oc 

bl (a)=Arl -BB, 

h(Axl- B) 
c(x1) = - -qg-- 6 (Xl + zo:o) for --w<xl<w 

The Riemann-Hilbert problem for a circle or a half-plane can be re- 

duced to the problem of Remann when the desired analytic function is 

suitably continued by a piecewise analytic function over the full complex 

plane [5,6 I. ‘lhe corresponding Riemann problem has the form 

Here 

PI+ (~1) = G (4 Pi (XI) + g (XI) (4.6) 

I 
a + ib 

G (q) = - =-_ = ( 
1 for --<xl<1 

AxI-B--_ixl- 1 

(AxI--B+iixl- 1 
for l<xl<m 

g 6%) = a& = for --oo<x~<c~ 

'Ihe solution of the modified problem will be given by the function 

PI+(z) which satisfies the "continuation" condition 

p1+ (21) = P1- (21, (4.7) 

lhe function G(x,) can be represented as 

G (xl) = 7 - 
Axl-B-i~~ 

_- 0+(x1) 

@ (x~) - AxI - B + i Jfzl - 1 
(4.8) 

on the complete real axis. In this form, it is understood that when one 

proceeds along the real axis, different branches of the multivalued 

function \/x1 - 1 are reached as one passes through the branchpoint x1=1; 

the function \/x1 - 1 acquires the factor + i in the denominator, and-i 
in the numerator. Ihis also follows from the fact that G(x,) can be 
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represented as a ratio of functions @+(x~) and @-(x,1, which are the 

boundary values of analytic functions determined in the upper and lower 

half-plane, respectively. The function G(x,l will not have zeros or 

poles all along the real axis. Ihen 

@,+ (21) = 
1 

Azl-B+i)/zz ’ 

Rewriting the boundary condition 

CP- (21) = 
1 

AzI-B-i vzl--l 
(4.9) 

(4.6) in the form 

p1+ (Xl) p1- (Xl) g (Xl) -=- ~ 
Q,+ (Xl) @- (Xl) + @'+(x1) 

we obtain 

PI+ (~1) =cD+ tzd PI’+ (~1) f Q, WI, P; (~1) = a- (~1) IY-(ZI) f Q, (~111 (4.10 

where 

Y (21) = 2 
“” 
s 

b (z + ~0) dr h 1 
-- 

o(“c)a+(z) z--z1 - ni 0 (x0) o+ (x0) (x0 - z1) 
(4.11) 

-cc 

Here Q,(z) represents a polynomial of degree m with arbitrary complex 

coefficients. The choice of the integer m depends on the choice of the 

function o(zl) and on the behavior of the solution at infinity. Thus, 

the general solution of the boundary-value problem (4.1) becomes 

p+ (21) = OJ (~1) m+ (21) [Y+ (ZI) + Q, (zl)] (4.12) 

In order to satisfy the llcontinuationn condition (4.7) it is sufficient 

to make use of the fact that the coefficients of the polynomial Qn(zl) 

are real. Furthermore, we shall set m = 0 for all functions o(zll, i.e. 

Q0 = C,, because p+(zl) would otherwise possess zeros at a series of 

points of the upper half-plane, which is inadmissible on physical grounds. 

The constant Co must be determined from the integral condition 

kl 

s 
1 aP - -dy= 

xa(M2+3) 

Y ay 3(W-- 1) 
(1.13) 

0 

which follows easily from the relations (l.6) on the shock wave. 

It is interesting to note that the singularity of the pressure at 

x = x0 appears as a consequence of the linearization and yet it correctly 

describes the flow pattern. Figure 1 of [4 1 exhibits experimental re- 

sults, which show that in the case of subsonic flow behind the shock wave 

the increment in the static pressure at the corner of the wall, though 

finite, dominates the field in magnitude. 
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5. Pressure distribution on the wall and the choice of the 
solution. In order to choose the desired solution, let us study the 
pressure distributions on the wall. ‘lhe limiting values of (4.12) on the 
real axis are obtained from Sokhotski’ s formula. For the case of sub- 
sonic flow behind the shock wave, we have for -1 <xl < +l 

8P -1 
aYl 

I 6(q + zo) 
1/l - MI2 

aP 02 (Xl) k uMl (AQ-B -v-i) 1 

3 

(5.1) 

az,= AxI--B- VI-z1 I’ I- Mlao @AI) ~+co 

Let us write the x-derivatives of the pressure for all the functions 
(4.4) in the original similarity variables 

ap(l) ap@) 
-=(k-~)21/l-~~~1(z), al:=z ax 

ap(4) (k - x)~ 

- = 1/ fI$ 'Pa (2) ax 

Where $j(X) (j = 1, . . . . 4) are continuous functions, which become 
neither zero nor infinite on the interval - 1 < x < k, with exception of 
the point x = - M,, where they are infinite to the first order. 

lhe functions p(x) can be expressed in terms of elementary functions. 
From the four solutions, preference should be given to P(‘)(X), which 
corresponds to the function o (2) (z,), is identical with the solutions of 
[ 1,2 1 and agrees well with the experiment. ‘lhe detailed distribution of 
the pressure p ‘2’(x) and its comparison with experiment is given in [ 4 1. 

For the cases which correspond to functions p(l)(~) and P(~)(Z), the 
pressure settles to a constant value iwediately behind the shock wave 
at the point of its intersection with the wall, which is contrary to 

physical sense. The vanishing of dp ( “/d_z and ~5’p’~‘/dx at the point 
XC- 1 is associated with zero values of the pressure disturbance as 
the corner of the wall is approached from the right at 1, = 1. 

The author is indebted to F.D. Gakhov and N.N. Moiseiev for valuable 
advice. 
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